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Exact results for deterministic cellular automata traffic models
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We present a rigorous derivation of the flow at arbitrary time in a deterministic cellular automaton model of
traffic flow. The derivation employs regularities in preimages of blocks of zeros, reducing the problem of
preimage enumeration to a well-known lattice path counting problem. Assuming infinite lattice size and
random initial configuration, the flow can be expressed in terms of generalized hypergeometric function. We
show that the steady-state limit agrees with previously published results.@S1063-651X~99!07207-4#

PACS number~s!: 64.60.Ak, 05.40.2a, 05.70.Jk, 89.40.1k
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I. INTRODUCTION

Since the introduction of the Nagel-Schreckenberg~NS!
model in 1992 @1#, cellular automata became a we
established method of traffic flow modeling. Comparative
low computational cost of cellular automata models mad
possible to conduct large-scale real-time simulations of
ban traffic in the city of Duisburg@2# and Dallas/Forth Worth
@3#. Several simplified models have been proposed, includ
models based on deterministic cellular automata. For
ample, Nagel and Herrmann@4# considered deterministic
version of the NS model, while Fukui and Ishibashi~FI! @5#
introduced another model, which can be understood as a
eralization of cellular automaton rule 184. Rule 184, one
the elementary Cellular automaton~CA! rules investigated
by Wolfram @6#, had been later studied in detail as a simp
model of surface growth@7#, as well as in the context o
density classification problem@8#. It is one of the only two
~symmetric! nontrivial elementary rules conserving the num
ber of active sites@9#, and, therefore, can be interpreted a
rule governing dynamics of particles~cars!. Particles~cars!
move to the left if their right neighbor site is empty, and
not move if the right neighbor site is occupied, all of the
moving simultaneously at each discrete time step. Using
minology of lattice stochastic processes, rule 184 can
viewed as a discrete-time version of totally asymme
simple exclusion process. Further generalization of the
model has been proposed in@10#.

In all traffic models, the main quantity of interest is th
average velocity of cars, or the average flow, defined a
product of the average velocity and the density of cars. T
graph of the flow as a function of density is called a fund
mental diagram, and is typically studied in the steady s
(t→`). For the FI model, a steady-state fundamental d
gram can be obtained using mean-field argument@5#, as well
as by statistical mechanical approach@11# or by studying the
time evolution of intercar spacing@12#. In general, little is
known about nonequilibrium properties of the flow. In@8#,
we investigated dynamics of rule 184 and derived expres
for the flow at arbitrary time, assuming that the initial co
figuration~at t50) was random, using the concept of defe
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and analyzing the dynamics of their collisions. In what fo
lows, we shall generalize results of@8# for the deterministic
FI traffic flow model and derive the expression for the flo
at arbitrary time. The derivation employs regularities of p
images of blocks of zeros, reducing the problem of preima
enumeration to a well-known combinatorial problem of la
tice path counting. Assuming infinite lattice size and rand
initial configuration, the flow can then be expressed in ter
of generalized hypergeometric function. We will, unlike
@8#, explore regularities of preimages using purely algebr
methods, i.e., without resorting to properties of spatiotem
ral diagrams and dynamics of defects.

II. DETERMINISTIC TRAFFIC RULES

Deterministic version of the FI traffic model is defined o
a one-dimensional lattice ofL sites with periodic boundary
conditions. Each site is either occupied by a vehicle,
empty. The velocity of each vehicle is an integer betwee
andm. If x( i ,t) denotes the position of thei th car at timet,
the position of the next car ahead at timet is x( i 11,t). With
this notation, the system evolves according to a synchron
rule given by

x~ i ,t11!5x~ i ,t !1v~ i ,t !, ~1!

where

v~ i ,t !5min„x~ i 11,t !2x~ i ,t !21,m… ~2!

is the velocity of cari at time t. Sinceg5x( i 11,t)2x( i ,t)
21 is the gap~number of empty sites! between carsi and
i 11 at time t, one could say that each time step, each
advances byg sites to the right ifg<m, and bym sites if
g.m. Whenm51, this model is equivalent to elementa
cellular automaton rule 184, for which a number of exa
results is known@7,8#.

The main quantities of interest in this paper will be t
average velocity of cars at timet defined as

v̄~ t !5
1

N (
i 51

N

v~ i ,t !, ~3!

and the average flowf(t)5r v̄(t), wherer5N/L is the den-
sity of cars. In what follows, we will assume that att50 the
197 ©1999 The American Physical Society



by

e
il-

e
n

he

a

b

e
lar

-

ft,

ly

lf,

n.

re-
l,
ite

i-

at

e

198 PRE 60HENRYK FUKŚ
cars are randomly distributed on the lattice. WhenN→`,
this corresponds to a situation when sites are occupied
car with probabilityr, or are empty with probability 12r.

In general, ifNk(t) is the number of cars with velocityk,
we have

v̄~ t !5
1

N (
k51

m

kNk~ t !. ~4!

When k,m, Nk(t) is just the number of blocks of typ
10k1, where 0k denotesk zeros. This means that a probab
ity of an occurrence of the block 10k1 at timet can be writ-
ten as Pt(10k1)5Nk /L. Similarly, for k5m, Pt(10m)
5Nm(t)/L. As a consequence, Eq.~4! becomes

v̄~ t !5 (
k51

m21
kPt~10k1!

r
1

mPt~10m!

r
. ~5!

We will now demonstrate that in the deterministic FI mod
with maximum speedm the average flow depends only o
one block probability. More precisely, we shall prove t
following:

Proposition 1. In the deterministic FI model with the
maximum speedm, the average flowfm(t) is given by

fm~ t !512r2Pt~0m11!. ~6!

To prove this proposition by induction, we first note th
for m51 Eq. ~5! gives f1(t)5Pt(10). Using consistency
condition for block probabilitiesPt(10)1Pt(00)5Pt(0)
512r, we obtainf1(t)512r2P(00), which verifies Eq.
~6! in the m51 case. Now assume that Eq.~6! is true for
somem5n21 ~wheren.1), and computefn(t):

fn~ t !5nPt~10n!1 (
j 51

n21

jP~10 j1!

5nPt~10n!1~n21!Pt~10n211!1 (
j 51

n22

jP~10 j1!

5~n21!@Pt~10n211!1Pt~10n!#1Pt~10n!

1 (
j 51

n22

jP~10 j1!.

Using the consistency conditionPt(10n211)1Pt(10n)
5Pt(10n21) we obtain

fn~ t !5Pt~10n!1~n21!Pt~10n21!1 (
j 51

n22

jP~10 j1!

5Pt~10n!1fm21~ t !.

Taking into account that Pt(10n)5Pt(0
n)2Pt(0

n11)
~which, again, is just a consistency condition for block pro
abilities!, and using Eq.~6! to expressfm21(t), we finally
obtain

fm~ t !512r2Pt~0m11!. ~7!
a

l

t

-

This means that the validity of Eq.~6! for m5n follows
from its validity for m5n21, concluding our proof by in-
duction.

III. ENUMERATION OF PREIMAGES OF 0 m11

Proposition 1 reduces the problem of computingfm(t) to
the problem of finding the probability of a block ofm11
zeros. In order to find this probability, we will now use th
fact that the deterministic FI model is equivalent to a cellu
automaton defined as follows. Lets( i ,t) denote the state of a
lattice site i at time t ~note that i now labels consecutive
lattice sites,not consecutive cars!, wheres( i ,t)51 for a site
occupied by a car ands( i ,t)50 otherwise. We can immedi
ately realize that if a sitei is empty at timet, then at timet
11 it can become occupied by a car arriving from the le
but not from a site further thani 2m. Similarly, if a sitei is
occupied, it will become empty at the next time step on
and only if site i 11 is empty. Thus, in general,s( i ,t11)
depends ons( i 2m,t),s( i 2m11,t), . . . ,s( i 11,t), i.e., on
the state ofm sites to the left, one site to the right, and itse
but not on any other site, that can be expressed as

s~ i ,t11!5 f m„s~ i 2m,t !,s~ i 2m11,t !, . . . ,s~ i 11,t !…,
~8!

wheref m is called a local function of the cellular automato
For the FI CA, one can write explicit formula1 for f m , such
as

f m„s~ i 2m,t !,s~ i 2m11,t !, . . . ,s~ i 11,t !…

5s~ i ,t !2min$s~ i ,t !,12s~ i 11,t !%

1min$max@s~ i 2m,t !,s~ i 2m11,t !, . . . ,

s~ i 21,t !],12s~ i ,t !%, ~9!

which, using terminology of cellular automata theory, rep
sents a rule with left radiusm and right radius 1. In genera
after t iteration of this cellular automaton rule, state of a s
s( i ,t) depends ons( i 2mt,0),s( i 2mt11,0), . . . ,s( i 1t,0),
but not on any other sites in the initial configuration. Sim
larly, a block of k sites s( i ,t)s( i 11,t)•••s( i 1k) depends
only on a block s( i 2mt,0),s( i 2mt11,0), . . . ,s( i 1k
1t,0), as schematically shown in Fig. 1. We will say th
s( i 2mt,0),s( i 2mt11,0), . . . ,s( i 1k1t,0) is a t-step pre-
image of the blocks( i ,t)s( i 11,t)•••s( i 1k). Preimages in
the FI cellular automaton have the following property:

Proposition 2. Block a1a2a3•••ap is ann-step preimage
of a block 0m11 if and only if p5(n11)(m11) and, for
everyk (1<k<p),

(
i 51

k

j~ai !.0, ~10!

wherej(1)52m andj(0)51.

1Since formula~9! will not be used in subsequent calculations, w
give it without proof~which is elementary!.
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Before we present a proof of this proposition, note tha
can be interpreted as follows. Let us assume that we ha
block of zeros and ones of lengthp, where p5(n11)(m
11), and we want to check if this block is ann-step preim-
age of a block 0m11. We start with a ‘‘capital’’ equal to zero
Now we move from the leftmost site to the right, and eve
time we encounter 0, we increase our capital bym. Every
time we encounter 1, our capital decreases by 1. If we
move froma1 to ap and our capital stays always larger th
zero, the stringa1a2a3 . . . ap is a preimage of 0m11. Con-
dition ~10! can be also written as

(
i 51

k

ai,
k

m11
, ~11!

becausej(x)512(m11)x for xP$0,1%.
For the purpose of the proof, stringsa1a2•••ap of length

p satisfying Eg.~11! for a givenm and for everyk<p will be
calledm-admissible strings.

Lemma. Let s(1,t)s(2,t)•••s(p,t) be an m-admissible
string. If

s~ i ,t11!5 f m„s~ i 2m,t !,s~ i 2m11,t !, . . . ,s~ i 11,t !…,
~12!

and if f m is a local function of the deterministic FI mode
with maximum speed m, then s(m11,t11)s(m12,t
11)•••s(p21,t11) is also anm-admissible string.

To prove the lemma, it is helpful to employ the fact th
the FI rule conserves the number of cars. Let 0,k,p and
let us consider stringsS15s(1,t)s(2,t)•••s(k,t) and S2
5s(m11,t11)s(2,t11)•••s(k,t11). If the string
s(1,t)s(2,t)•••s(k,t) is m-admissible, then its firstm11
sites must be zeros. This means that in one time step, no
can enter strings(1,t)s(2,t)•••s(k,t) from the left. On the
other hand, in a single time step, only one car~or none! can
leave the string on the right-hand side, i.e.,

(
i 51

k

s~ i ,t !5e1 (
i 5m11

k

s~ i ,t11!, ~13!

whereeP$0,1%. Three cases can be distinguished:
~i! All sites s(k2m11,t)s(k2m12,t)•••s(k,t) are

empty~equal to 0!. Then no car leavesS1, which means that
e50, and

FIG. 1. Fragment of a spatiotemporal diagram for the FI r
with m52. States of nine sites during three consecutive time s
are shown, black circles representing occupied sites. BlockB1

5101110100 is a two-step preimage of the blockB25100. Out-
lined sites constitute ‘‘light cone’’ of the blockB2, meaning that the
state of sites belonging toB2 can depend only on sites inside th
outlined region, but not on sites outside this region.
it
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(
i 51

k

s~ i ,t !5 (
i 5m11

k

s~ i ,t11!5 (
i 5m11

k2m

s~ i ,t11!,
k2m

m11
.

~14!

The last inequality is a direct consequence ofm admissibility
of S1. Since the length of the stringS2 is equal tok2m, the
above relation~which holds for arbitraryk) proves thatS2 is
alsom admissible in the case considered.

~ii ! Among sites s(k2m11,t)s(k2m12,t)•••s(k,t)
there is at least one which is occupied~equal to 1!, ands(k
11,t)51. In this case, since the last site inS1 is ‘‘blocked’’
by the car ats(k11,t), again no car can leave stringS1 in
one time step. Therefore,

(
i 51

k

s~ i ,t !5 (
i 5m11

k

s~ i ,t11!. ~15!

m-admissibility ofS2 implies

k11

m11
. (

i 51

k11

s~ i ,t !5(
i 51

k

s~ i ,t !11. ~16!

Combining Eq.~15! with Eq. ~16! we obtain

(
i 5m11

k2m

s~ i ,t11!,
k2m

m11
, ~17!

which again shows thatS2 is m admissible.
~iii ! Among sites s(k2m11,t)s(k2m12,t)•••s(k,t)

there is at least one which is occupied~equal to 1!, ands(k
11,t)50. In this case, one car will leave at the right end
the stringS1; therefore,

(
i 51

k

s~ i ,t !5 (
i 5m11

k

s~ i ,t11!21. ~18!

As before, fromm admissibility ofS1 we have

(
i 51

k11

s~ i ,t !5(
i 51

k

s~ i ,t !,
k11

m11
; ~19!

hence,

(
i 5m11

k

s~ i ,t11!5 (
i 5m11

k

s~ i ,t11!21,
k11

m11
215

k2m

m11
,

~20!

which demonstrates that case~iii ! also leads tom admissibil-
ity of S2, concluding the proof of our lemma.

Let us now assume that the block B1
5s(1,t)s(2,t)•••s(p,t) is m admissible@n being some fixed
integer andp5(m11)(n11)#. Applying the lemma to this
block we conclude thatB25s(m11,t11)s(2,t11)•••s(p
21,t11) is m admissible as well. Applying the lemma toB2
we obtain m-admissible block B35s(2m11,t12)s(2,t
12)•••s(p22,t12). After n applications of the lemma we
end up with the conclusion that the stringBn115s(nm
11,n11)s(nm12,n11)•••s(p2n) is m admissible. Since
the length of Bn11 is p2n2nm5(n11)(m11)2n(m
11)5m11, it must, to bem admissible, be composed of a

s
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zeros, i.e.,Bm1150m11. This means thatm admissibility of
B1 is a sufficient condition forB1 to be ann-step preimage
of 0m11. Reversing steps in the above reasoning, one
show that it is also a necessary condition.

IV. FUNDAMENTAL DIAGRAM

We shall now use Proposition 2 to calculatePt(0
m11).

First of all, we note thatPt(0
m11) is equal to the probability

of occurrence oft-step preimage of 0m11 in the initial ~ran-
dom! configuration; that is,

Pt~0m11!5( P0~a!, ~21!

where the sum goes over allt-step preimages of 0m11. Con-
sider now a string, which containsn0 zeros andn1 ones. The
number of such strings can be immediately obtained if
realize that it is equal to the number of lattice paths from
origin to (n0 ,n1) that do not touch nor cross the linex
5my, as shown in Fig. 2. This is a well-known combinat
rial problem @13#, and the number of aforementioned pat
equals

n02mn1

n01n1
S n01n1

n1
D . ~22!

Probability of occurrence of such a block in a random co
figurations is, therefore,

n02mn1

n01n1
S n01n1

n1
D rn1~12r!n0, ~23!

wherer5P(1). In a t-step preimage of 0m11 the minimum
number of zeros is 11m(t11), while the maximum is (m
11)(t11) ~corresponding to all zeros!. Therefore, summing
over all possible numbers of zerosi, we obtain

Pt~0m11!5 (
i 511m(t11)

(m11)(t11)
i 2m@~m11!~ t11!2 i #

~m11!~ t11!

3S ~m11!~ t11!

~m11!~ t11!2 i D 3r (m11)(t11)2 i~12r! i .

Changing summation indexj 5 i 2m(t11) we obtain

FIG. 2. m-admissible block withn0 zeros andn1 ones is equiva-
lent to a lattice path from the origin to (n0 ,n1), which does not
touch nor cross the linex5my. 0 corresponds to a horizontal se
ment, while 1 corresponds to a vertical segment.
n

e
e

-

Pt~0m11!5(
j 51

t11
j

t11 S ~m11!~ t11!

t112 j D
3r t112 j~12r!m(t11)1 j . ~24!

Figure 3 shows a graph ofPt(0
m11) as a function ofr for

m52 and several values oft. We can observe that ast in-
creases, the graph becomes ‘‘sharper’’ atr51/3, eventually
developing singularity~discontinuity in the first derivative!
at r51/3. More precisely, one can show~see Appendix! that

lim
t→`

Pt~0m11!5H 12~m11!r if p,1/~m11!

0 otherwise.
~25!

P`(0m11), therefore, can be viewed as the order parame
in a phase transition with critical point atr51/(m11). Us-
ing Proposition 1 we can now find the average flow in t
steady state

fm~`!5H mr if p,1/~m11!

12r otherwise,
~26!

which agrees with mean-field type calculations reported
@5# as well as with results of@11,12#. To verify validity of the
result for t,`, we performed computer simulations using
lattice of 105 sites with periodic boundary conditions. Th
average flow has been recorded after each iteration upt
5100 for three values ofr: at the critical pointr51/3 as
well as below and above the critical point. The resulti
plots of the flow as a function of time are presented in Fig
Again, the agreement with theoretical curves,

fm~ t !512r2(
j 51

t11
j

t11 S ~m11!~ t11!

t112 j D
3r t112 j~12r!m(t11)1 j , ~27!

is very good. Without going into details, we note that t
formula ~27! can be also expressed in terms of generaliz
hypergeometric function2F1:

FIG. 3. Graph of the probabilityPt(0
m11) as a function ofr for

m52 andt51 ~upper line!, t55 ~middle line!, andt5100 ~lower
line!.
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PRE 60 201EXACT RESULT FOR DETERMINISTIC CELLULAR . . .
fm~ t !512r2
~12r!11m1mtr t~11m1t1mt!!

~11m1mt!~11t !! ~m1mt!!

3 2F1F 2,2t

21m1mt
;12

1

rG . ~28!

Since fast numerical algorithms for computing2F1 exist, this
form might be useful for the purpose of numerical evaluat
of fm(t).

V. CONCLUSION

We presented derivation of the flow at arbitrary time
the deterministic FI cellular automaton model of traffic flo
First, we showed that the flow can be expressed by the p
ability of occurrence of the block ofm11 zerosP(0m11).
By employing regularities in preimages of blocks of zero
we reduced the problem of preimage enumeration to the
tice path counting problem. Finally, we used the number
preimages to findP(0m11), which determines the flow.

We also found that the flow in the steady state, obtain
by takingt→` limit, agrees with previously reported mea
field-type calculations, meaning that in the case of the
model mean-field approximation gives exact results. T
seems to be true not only for the FI model, but also for ma
other CA rules conserving the number of active sites~‘‘con-
servative’’ CA!. For example, in@9# we reported that the
third order local structure approximation, which is a gen
alization of simple mean-field theory incorporating sho
range correlations, yields the fundamental diagram for r
60 200 ~one of the 4-input ‘‘conservative’’ CA rules! in

FIG. 4. Plots of f2(t)/f2(`) as a function of time forr
50.3, r51/3, andr50.35 obtained from computer simulation on
lattice of 105 sites. Continuous line corresponds to the theoret
result obtained using Eq.~28!.
n

b-

,
t-
f

d

I
is
y

-
-
le

extremely good agreement with computer simulations. T
ing this into account, we conjecture that the local struct
approximation gives an exact fundamental diagram for
most all ‘‘conservative’’ rules, excluding, perhaps, tho
rules for which the fundamental diagram is not sufficien
‘‘regular’’ ~meaning not piecewise linear!. This problem is
currently under investigation.
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APPENDIX

In order to find the limit lim
t→`

Pt(0
m11) we can write

Eq. ~24! in the form

Pt~0m11!5(
j 51

t11
j

t11
b„t112 j ,~m11!~ t11!,r…,

~A1!

where

b~k,n,p!5S n

kD pk~12p!n2k ~A2!

is the distribution function of the binomial distribution. Us
ing de Moivre-Laplace limit theorem, binomial distributio
for largen can be approximated by the normal distributio

b~k,n,p!;
1

A2pnp~12p!
exp

2~k2np!2

2np~12p!
. ~A3!

To simplify notation, let us defineT5t11 andM5m11.
Now, using Eq.~A3! to approximateb(T2 j ,MT,r) in Eq.
~A1!, and approximating sum by an integral, we obtain

Pt~0m11!5E
1

T x

T

1

A2pMTr~12r!

3expF ~2T2x2MTr!2

2MTr~12r! Gdx. ~A4!

Integration yields

l

Pt~0m11!5AMr~12r!

2pT H expS 2~12T1MrT!2

2MTr~12r! D 2expS 2MrT

2~12r!D J
1

1

2
~12Mr!H erf S MrT

A2Mr~12r!T
D 2erf S 12T1MrT

A2Mr~12r!T
D J ,
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where erf(x) denotes the error function

erf~x!5
2

Ap
E

0

x

e2t2dt. ~A5!

The first term in the above equation~involving two exponen-
tials! tends to 0 withT→`. Moreover, since lim

x→`
erf(x)

51, we obtain

lim
t→`

Pt~0m11!5
1

2
~12Mr!

3H 12 lim
T→`

erfS 12T1MrT

A2Mr~12r!T
D J .
-

Now, noting that

lim
T→`

erf S 12T1MrT

A2Mr~12r!T
D 5H 1 if Mr>1

21 otherwise,
~A6!

and returning to the original notation, we recover Eq.~25!:

lim
t→`

Pt~0m11!5H 12~m11!r if p,1/~m11!

0 otherwise.
~A7!
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