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Exact results for deterministic cellular automata traffic models
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We present a rigorous derivation of the flow at arbitrary time in a deterministic cellular automaton model of
traffic flow. The derivation employs regularities in preimages of blocks of zeros, reducing the problem of
preimage enumeration to a well-known lattice path counting problem. Assuming infinite lattice size and
random initial configuration, the flow can be expressed in terms of generalized hypergeometric function. We
show that the steady-state limit agrees with previously published res863-651X99)07207-4

PACS numbses): 64.60.Ak, 05.40-a, 05.70.Jk, 89.48:k

I. INTRODUCTION and analyzing the dynamics of their collisions. In what fol-
lows, we shall generalize results [@&] for the deterministic

Since the introduction of the Nagel-Schreckenb@é¥®) FI traffic flow model and derive the expression for the flow
model in 1992 [1], cellular automata became a well- at arbitrary time. The derivation employs regularities of pre-
established method of traffic flow modeling. Comparativelyimages of blocks of zeros, reducing the problem of preimage
low computational cost of cellular automata models made iEnumeration to a well-known combinatorial problem of lat-
possible to conduct large-scale real-time simulations of urtice path counting. Assuming infinite lattice size and random
ban traffic in the city of Duisbur{2] and Dallas/Forth Worth initial configuration, the flow can then be expressed in terms
[3]. Several simplified models have been proposed, includingf generalized hypergeometric function. We will, unlike in
models based on deterministic cellular automata. For ext8], explore regularities of preimages using purely algebraic
ample, Nagel and Herrmanpd] considered deterministic methods, i.e., without resorting to properties of spatiotempo-
version of the NS model, while Fukui and Ishibaghl) [5] ~ ral diagrams and dynamics of defects.
introduced another model, which can be understood as a gen-
eralization of cellular automaton rule 184. Rule 184, one of Il. DETERMINISTIC TRAFFIC RULES
the elementary Cellular automat@@A) rules investigated N : . . ,
by Wolfram[6], had been later studied in detail as a simple Deterministic version of the_FI trafflc model_ls defined on
model of surface growtli7], as well as in the context of a one-dimensional lattice df sites with periodic boundary

density classification probleii8]. It is one of the only two condmogﬁ. Ealch_snef IS er|]therho|ccgp|ed.by a Vsh'de’ o(r)
(symmetrig nontrivial elementary rules conserving the num- empty. The velocity of each vehicle is an integer between

ber of active site$9], and, therefore, can be interpreted as aand m. If x(i,t) denotes the position of thgh car at timet,

rule governing dynamics of particlésarg. Particles(cary € Position of the next car ahead at tifnie x(i +1.t). With
move to the left if their right neighbor site is empty, and do this notation, the system evolves according to a synchronous
not move if the right neighbor site is occupied, all of them '€ given by
moving simultaneously at each discrete time step. Using ter- ; (i ;
minology of lattice stochastic processes, rule 184 can be x(Lt+D)=x{,H+v (i), @)
viewed as a discrete-time version of totally asymmetricywhere
simple exclusion process. Further generalization of the FlI
model has been proposed|[ih0]. v(i,t)=min(x(i+1t)—x(i,t)—1,m) 2

In all traffic models, the main quantity of interest is the ) ) ) ] ) )
average velocity of cars, or the average flow, defined as & the velocity of cai at timet. Sinceg=x(i +1,t) —x(i,t)
product of the average velocity and the density of cars. The 1 is the gap(number of empty sitgsbetween cars and
graph of the flow as a function of density is called a funda- *1 at timet, one could say that each time step, each car
mental diagram, and is typically studied in the steady stat@dvances by sites to the right ifg<m, and bym sites if
(t—). For the FI model, a steady-state fundamental diagd>Mm- Whenm=1, this model is equivalent to elementary
gram can be obtained using mean-field argunightas well cellular_automaton rule 184, for which a number of exact
as by statistical mechanical approddf] or by studying the ~results is knowri7,8]. _ S .
time evolution of intercar spacingl2). In general, little is The main quantities of interest in this paper will be the
known about nonequilibrium properties of the flow.[8],  average velocity of cars at tintedefined as
we investigated dynamics of rule 184 and derived expression N
for the flow at arbitrary time, assuming that the initial con- v—(t): i z u(i ) ®)
figuration(att=0) was random, using the concept of defects Ni=

and the average flow(t) = pv_(t), wherep=N/L is the den-
*Electronic address: hfuks@fields.utoronto.ca sity of cars. In what follows, we will assume thattat0 the
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cars are randomly distributed on the lattice. Whén»oo,
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This means that the validity of Eq6) for m=n follows

this corresponds to a situation when sites are occupied by faom its validity for m=n—1, concluding our proof by in-

car with probabilityp, or are empty with probability % p.
In general, ifN,(t) is the number of cars with velocit;
we have

1 m
— > KN(t).

(=5 2

(4)

When k<<m, Ni(t) is just the number of blocks of type
10¢1, where ¢ denotesk zeros. This means that a probabil-
ity of an occurrence of the block 1D at timet can be writ-
ten as P, (101)=N,/L. Similarly, for k=m, P,(10")
=Np(t)/L. As a consequence, Ef}) becomes

duction.

lIl. ENUMERATION OF PREIMAGES OF 0 ™M*!

Proposition 1 reduces the problem of computifig(t) to
the problem of finding the probability of a block ofi+ 1
zeros. In order to find this probability, we will now use the
fact that the deterministic FI model is equivalent to a cellular
automaton defined as follows. Lsfi,t) denote the state of a
lattice sitei at timet (note thati now labels consecutive
lattice sitesnpot consecutive cajswheres(i,t)=1 for a site
occupied by a car ansli,t) =0 otherwise. We can immedi-
ately realize that if a sit¢ is empty at timet, then at timet
+1 it can become occupied by a car arriving from the left,

i _mil kPy(101) +mPt(10m) g butnot from a site further thai-m. Similarly, if a sitei is
v(t)= ~ p p : (5) occupied, it will become empty at the next time step only
and only if sitei+1 is empty. Thus, in generag(i,t+1)
We will now demonstrate that in the deterministic FI modeldepends ors(i —m,t),s(i—m+1t), ... s(i+1t), i.e., on

with maximum speedn the average flow depends only on

the state o sites to the left, one site to the right, and itself,

one block probability. More precisely, we shall prove thebPut not on any other site, that can be expressed as

following:
Proposition 1. In the deterministic FI model with the
maximum speedn, the average flowp,(t) is given by

bm(t)=1—p—P,(0™H). (6)

s(i,t+1)=f(s(i—m,t),s(i—m+1t),...,s(i+1}t)),
)

wheref, is called a local function of the cellular automaton.
For the FI CA, one can write explicit formdidor f,,, such

. " . . ) as
To prove this proposition by induction, we first note that

for m=1 Eq. (5) gives ¢,(t)=P;(10). Using consistency
condition for block probabilitiesP;(10)+ P,(00)=P,(0)
=1-p, we obtaing,(t) =1—p—P(00), which verifies Eq.
(6) in the m=1 case. Now assume that E®) is true for
somem=n—1 (wheren>1), and computeb,(t):

n—1

$n(H)=nP(10)+ X, jP(10'1)
i=1
n—-2

=nP(10")+(n—1)P,(10" 1)+ >, jP(10i1)
j=1

=(n—1)[Py(10" 1)+ P,(10") ]+ P,(10")
n—-2
+21 jP(10/1).
=

Using the consistency conditiorP,(10" 1)+ P,(10")
=P,(10""1) we obtain
n—-2
Ga(1)=Py(10")+(n—1)P(10" Y+ > jP(101)
=1
=P(10") + ¢y 1(1).

Taking into account thatP,(10")=P,(0")—P,(0"*?)

fm(s(i—m,t),s(i—m+1t), ... ,s(i+1t))

=s(i,t) —min{s(i,t),1—s(i + 1,t)}

+min{max{s(i—m,t),s(i—m+1t), ...,

s(i—1t)],1-s(i,t)}, 9
which, using terminology of cellular automata theory, repre-
sents a rule with left radius and right radius 1. In general,
aftert iteration of this cellular automaton rule, state of a site
s(i,t) depends ors(i —mt,0),s(i —mt+1,0),...,s(i +t,0),
but not on any other sites in the initial configuration. Simi-
larly, a block ofk sitess(i,t)s(i+1t)---s(i+k) depends
only on a block s(i—mt0),s(i—mt+1,0),...,s(i+k
+1,0), as schematically shown in Fig. 1. We will say that
s(i—mt,0),s(i—mt+1,0),...,s(i+k+t,0) is at-step pre-
image of the blocks(i,t)s(i+1t)---s(i+k). Preimages in
the FI cellular automaton have the following property:

Proposition 2. Block a;a,a;- - - a, is ann-step preimage
of a block 0""! if and only if p=(n+1)(m+1) and, for
everyk (1sk=p),

k
El é(a)>0, (10)

(which, again, is just a consistency condition for block prob-Whereg(1)=—mand£(0)=1.

abilities), and using Eq(6) to expresso,,_(t), we finally
obtain

$m(t)=1—p—Py(0™"). @)

1Since formula9) will not be used in subsequent calculations, we
give it without proof(which is elementany
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B k k k—m ke
< - > Z s(it) = Z s(i,t+1)= >, s(it+l)<—r
= = m+1°

[0 000 @ -

| 900 @ [ ) o -
‘ ‘ ‘ . The last inequality is a direct consequencercddmissibility
t=3 of S;. Since the length of the strin®, is equal tok—m, the
‘T’ above relatioriwhich holds for arbitrark) proves that, is

FIG. 1. Fragment of a spatiotemporal diagram for the FI rule

alsom admissible in the case considered.

(i) Among sites s(k—m+1t)s(k—m+2t)---s(k,t)

with m=2. States of nine sites during three consecutive time stepthere is at least one which is occupi@djual to ), ands(k

are shown, black circles representing occupied sites. BB¢k
=101110100 is a two-step preimage of the bldk= 100. Out-
lined sites constitute “light cone” of the blodB,, meaning that the

+1t)=1. In this case, since the last siteSq is “blocked”
by the car ats(k+1t), again no car can leave strir§] in
one time step. Therefore,

state of sites belonging tB, can depend only on sites inside the

outlined region, but not on sites outside this region. K K
> s(it)= X s(i,t+1). (15)
Before we present a proof of this proposition, note that it =1 I=m+1
can be interpreted as follows. Let us assume that we haverﬁ-admissibilit of S, implies
block of zeros and ones of lengfh wherep=(n+1)(m y ofS, Imp
+1), and we want to check if this block is amrstep preim- k+1 X1 k
age of a block @1, We start with a “capital” equal to zero. T 1> 2 s(i,t)= E s(i,t)+1. (16)
Now we move from the leftmost site to the right, and every m =
time we encounter 0, we increase our capitalryEvery
time we encounter 1, our capital decreases by 1. If we CaCombmmg Eq.(15) with Eq. (16) we obtain
move froma, to a, and our capital stays always larger than k—m _
zero, the stringp,a,3a3 . . . a, is a preimage of 0L Con- E s(i,t+1)<——, (17)
dition (10) can be also Wr|tten as i=m+1 m+1
k K which again shows th&®, is m admissible.
E 1 (11 (i) Among sites s(k—m+1t)s(k—m+2t)- - -s(k,t)
=1 m there is at least one which is occupi@jual to }, ands(k
because(x)=1— (m-+1)x for xe{0,1}. +1,t)=_0. IrT this case, one car will leave at the right end of
. the stringS;; therefore,
For the purpose of the proof, stringsa,- - - a, of length

p satisfying Eg(11) for a givenmand for evenjk<p will be k k

called m-admissible strings. > s(it)= >, s(it+1)—1. (18

Lemma. Let s(1t)s(2t)---s(p,t) be anm-admissible i=1 i=m+1
string. If

"9 As before, fromm admissibility ofS; we have

s(i,t+21)="f,(s(i—m,t),s(i—m+1t), ... ,s(i+1})), ka1

(12 Z s(i,t)= 2 s(i, t)< (19
and if f,, is a local function of the deterministic FI model -
with maximum speedm, then s(m+21t+1)s(m+2t hence,
+1)---s(p—1t+1) is also amtmm-admissible string.

To prove the lemma, it is helpful to employ the fact that * K k+1 k—m
the FI rule conserves the number of cars. Letk<p and '—2+1 s(i,t+ 1)=__2+ st —1< 7 —1=—"7,
let us consider stringsS;=s(1t)s(2t)---s(k,t) andS, ' e (20)
=s(m+1t+1)s(2t+1)---s(k,t+1). If the string

s(1t)s(2}t)- - -s(k,t) is madmissible, then its firsm+1  which demonstrates that caéi) also leads ton admissibil-
sites must be zeros. This means that in one time step, no cay of S,, concluding the proof of our lemma.

can enter strings(1,t)s(2t) - - - s(k,t) from the left. On the Let us now assume that the blockB;
other hand, in a single time step, only one @rnong can  =s(1t)s(2t)- - -s(p,t) is madmissiblg n being some fixed
leave the string on the right-hand side, i.e., integer andp=(m+1)(n+1)]. Applying the lemma to this

K K block we conclude thaB,=s(m+1t+1)s(2t+1)---s(p

Co . —1t+1) ismadmissible as well. Applying the lemmaBy

Z‘l s(ihy= 6+i:;+1 s(i,t+1), 13 we obtain madmissible block B;=s(2m+1t+2)s(2t
+2)---s(p—2;t+2). After n applications of the lemma we

whereee{0,1}. Three cases can be distinguished: end up with the conclusion that the strir},,;=s(nm
(i) All sites s(k—m+1t)s(k—m+2t)---s(k,t) are +1n+21)s(nm+2n+1)---s(p—n)is madmissible. Since

empty(equal to Q. Then no car leaveS,;, which means that
e=0, and

the length of B,,;; is p—n—nm=(n+1)(m+1)—n(m
+1)=m+1, it must, to bem admissible, be composed of all
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FIG. 2. madmissible block wittng zeros and, ones is equiva- orr

; L : 0 . L . . I . X
lent to a lattice path_ from the origin tong,n,), Wh|ch_does not 0 01 02 03 04 05 06 07 o8 o5 1
touch nor cross the line=my. O corresponds to a horizontal seg- p

ment, while 1 corresponds to a vertical segment.

FIG. 3. Graph of the probabilit,(0™*1) as a function op for
zeros, i-e-Bm+1=0m+l- This means that admissibility of r_n:2 andt=1 (upper ling, t=5 (middle line, andt= 100 (lower

B, is a sufficient condition foB, to be ann-step preimage line).
of 0M*1. Reversing steps in the above reasoning, one can

t+1 .
show that it is also a necessary condition. P (O™ =S jo[((m+D)(t+1)
! St t+1-
IV. FUNDAMENTAL DIAGRAM 1| m(t+1)+
Xp T (1-p) L (24)

We shall now use Proposition 2 to calculd@g(0m*?1).

First of all, we note thaP,(0™"1) is equal to the probability Figure 3 shows a graph &¥,(0™"1) as a function ofp for
of occurrence of-step preimage of ™! in the initial (ran-  m=2 and several values of We can observe that asin-

dom) configuration; that is, creases, the graph becomes “sharperpat1/3, eventually
developing singularitydiscontinuity in the first derivative
P(0M*1)= 2 Po(a), (21) atp=1/3. More precisely, one can shdgee Appendixthat
where the sum goes over alstep preimages of' 0" *. Con- lim P,(0™+ 1) = [ 1=(m+1)p if p<lm+1) 25)
sider now a string, which contaimg zeros andh, ones. The tso 0 otherwise.

number of such strings can be immediately obtained if we
realize that it is equal to the number of lattice paths from thep (0™*1), therefore, can be viewed as the order parameter
origin to (ng,n;) that do not touch nor cross the line  in a phase transition with critical point at=1/(m+1). Us-

=my, as shown in Fig. 2. This is a well-known combinato- ing Proposition 1 we can now find the average flow in the
rial problem[13], and the number of aforementioned pathssteady state

equals
mp if p<1l/(m+1)

No+n -
o (22) $m(>) [1—;} otherwise,

Np—mMm (26)

Ng+nNq

Ny

Probability of occurrence of such a block in a random conWhich agrees with mean-field type calculations reported in
figurations is, therefore, [5] as well as with results dfL1,12). To verify validity of the

result fort<<oo, we performed computer simulations using a
lattice of 10 sites with periodic boundary conditions. The
p"(1=p)", (23)  average flow has been recorded after each iteration up to
=100 for three values op: at the critical pointp=1/3 as
wherep=P(1). In at-step preimage of O"* the minimum  Well as below and above the critical point. The resulting
number of zeros is +m(t+ 1), while the maximum isr plots of the flow as a function of time are presented in Fig. 4.
+1)(t+1) (corresponding to all zerasTherefore, summing Again, the agreement with theoretical curves,
over all possible numbers of zergswe obtain

Ng—mny [ No+ Ny

Ng+Nny

ny

t+1

j +1)(t+1
p.(OM+1 _(mHE)*le) i—=m(m+1)(t+1)—i] ¢m(t)=1—P—j21 _tJJrl (mt+i(—j ))
t( )_i=1+m(t+l) (m+1)(t+1) % t+1—j(1_ )m(t+1)+j (27)
(m+1)(t+1) p P ,

X p(M+ DT D=1 — )i

is very good. Without going into details, we note that the
formula (27) can be also expressed in terms of generalized
Changing summation inde}=i—m(t+1) we obtain hypergeometric functionF:

“Nmeyt+1)—i
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extremely good agreement with computer simulations. Tak-
ing this into account, we conjecture that the local structure

0.85 approximation gives an exact fundamental diagram for al-
os | most all “conservative” rules, excluding, perhaps, those
' rules for which the fundamental diagram is not sufficiently
T oss| “regular” (mear_ﬂng not p_iecewise linearThis problem is
& currently under investigation.
% o8t
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FIG. 4. Plots of ¢,(t)/ () as a function of time forp APPENDIX

=0.3, p=1/3, andp=0.35 obtained from computer simulation on a In order to find the limit lim pt(0m+1) we can write
lattice of 1@ sites. Continuous line corresponds to the theoretical e

result obtained using E¢28). Eq. (24) in the form
(1—p)r MM+ m+t+mt)! t+1
¢m(t)=1_p_ m+1y_ J_ .
(1+m+mt)(1+t)! (m+mt)! P,(0™"%) 21 t+1b(t+1 j,(m+1)(t+1),p),
=
2,—t 1 ) (A1)
X ,F 1——|.
ZU24m+mt” p 8
. . . . . ) where
Since fast numerical algorithms for computip, exist, this
form might be useful for the purpose of numerical evaluation
of dn(t). n
bk,n.p)=|{ p(1-p)" ¥ (A2)

V. CONCLUSION

W ted derivati f the Tl ¢ arbit ime | is the distribution function of the binomial distribution. Us-
€ presented derivation ot the flow at arbitrary time Ining de Moivre-Laplace limit theorem, binomial distribution

the deterministic FI cellular automaton model of traffic flow. . P
. for largen can be approximated by the normal distribution
First, we showed that the flow can be expressed by the prob- g PP Y

ability of occurrence of the block ah+1 zerosP(0™*1). 1 —(k—np)2

By employing regularities in preimages of blocks of zeros, b(k,n,p)~ exp. P . (A3)
we reduced the problem of preimage enumeration to the lat- V2mnp(1-p) 2np(1—p)

tice path counting problem. Finally, we used the number of o ) i

preimages to find®(0™* ), which determines the flow. To simplify notation, let us defin@=t+1 andM=m+1.

We also found that the flow in the steady state, obtained'OW, using Eq.(A3) to approximateb(T—},MT,p) in Eq.
by takingt— = limit, agrees with previously reported mean- (A1), @nd approximating sum by an integral, we obtain
field-type calculations, meaning that in the case of the FI
model mean-field approximation gives exact results. This
seems to be true not only for the FI model, but also for many P, (O™ 1) = ij 1
other CA rules conserving the number of active siteon- ! 1T 27MTp(1-p)
servative” CA). For example, inf9] we reported that the
third order local structure approximation, which is a gener- (—T—x—MTp)?
alization of simple mean-field theory incorporating short- Xex 2MTp(1—p)
range correlations, yields the fundamental diagram for rule
60 200 (one of the 4-input “conservative” CA rulgsin Integration yields

dx. (A4)

a1 /Mp(l—p)J —(1-T+MpT)? —MpT
P(0™ )= 27T [eXp( 2MTp(1—p) )_eXp(Z(l—p)

J

1 MpT 1-T+MpT
+5(1-Mp) eff| ——sx| —eff| —==] |,
2 V2Mp(1-p)T V2Mp(1-p)T
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where erfk) denotes the error function

2 (x o
erf(x)=\/—_foe dt.
a

The first term in the above equatidnvolving two exponen-
tials) tends to O withT— . Moreover, since Iirpﬂw erf(x)

(A5)

=1, we obtain

1
HmP&Om”j=§(L—Mp)

t—o
1-T+MpT

V2Mp(1—p)T

X { 1-lim erf

T

|
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Now, noting that
_ 1-T+MpT 1 ifMp=1
limerf| —————=|= . (AB)
S 2Mp(1—p)T —1 otherwise,

and returning to the original notation, we recover Ezp):

if p<1/(m+1)
lim P,(0™*1)=

t—oo

1-(m+1)p
0 otherwise.
(A7)
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